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Methods are presented for integrating differential equations in conservation form in an 
Eulerian mesh in the presence of discontinuities and shocks. We make use of the monotonicity 
property, namely, that a solution is assumed to be monotone between mesh points. 
Monotonicity is preserved by convective equations and can be rigorously implemented in a 
code. In more general systems of conservative equations, monotonicity is enforced when inter- 
polating a curve, given on an integer mesh, onto a half-integer mesh. This can be interpreted 
as introducing a local diffusive term whenever a discontinuity or shock occurs. The 
integration of a Riemann problem shows that with this method shocks are represented within 
two zones and contact discontinuities exhibit little diffusion. 

1. INTRODUCTION 

It is well known that the occurrence of shocks and discontinuities in nonlinear 
hyperbolic equations causes certain difficulties if these equations are solved 
numerically [l-3]. On the one hand, one would like to have a higher order 
scheme--usually second order-in the independent variables which reproduces the 
smooth parts of the solution with high accuracy. On the other hand, shocks should 
have a sharp transition and (contact) discontinuities should not rapidly diffuse; both 
should propagate with the correct speed. When higher order methods are being used, 
shocks may produce nonphysical oscillations which propagate into the smooth part 
of the solution. Also, over- and undershooting may occur, if the integration method is 
not diffusive enough to damp out such effects. But diffusion should be kept at a 
minimum to maintain a high resolution of the solution. 

Several new approaches have been suggested during recent years which cope with 
this problem. Among those are the following: In the flux-corrected transport (FCT) 
[4-71, a given density dtsribution is advanced in time according to the continuity 
equation and diffused so much that all overshooting is avoided. In an antidiffusion 
stage the diffusion is in part or completely taken out again, however restricted to the 
condition, so that no new extrema should be created, nor should the antidiffusion 
stage accentuate already existing extrema. 
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The artificial compression method (ACM) of Harten [8,9] prevents the smearing 
of contact discontinuities and improves the resolution of shocks. An equation is 
solved which differs from the original equation by artificial terms which steepen an 
existing discontinuity. 

The monotonicity principle is discussed by Van Leer [ 10-121 and others [9]. It 
makes use of a property of the equation 

au a 
z + pfw = 0. 

If the solution U(X, t) or a part of it is monotone at time t, it will remain SO for later 
times. 

Sod [ 13 ] has compared these and other methods by solving a Riemann problem. 
He also gave a more elaborate description of the various methods. 

We will describe methods for implementing the monotonicity principle in a simple 
way for convective equations (1) and for modifying it for systems in conservation 
form, 

(2) 

where u and F are vectors. The schemes are of second order in At and of second or 
higher order in Ax and preserve the flux. They represent discontinuities and shocks 
well and are easy to implement. 

In Section 2 we discuss the convective equation, in Section 3 the conservative 
system. Section 4 deals with the treatment of discontinuities for conservative systems 
and in Section 5 the conclusions are stated. 

2. CONVECTIVE EQUATIONS 

In this section we consider equations of the type (1). The solution of (1) is given 
by 

u(x, t) = u 
( 

x - 
3. (u> t o 

au’ ’ ) 

The value of u does not change along a characteristic dx/dt = a/au F(u), so that the 
set of function values is constant in time. If J’(U) = au, where a is a constant, (1) 
reduces to 

g u(x, t) = -u g. (4) 

The solution of (4) can be described as a translation of a profile U(X, 0) at time t = 0 
moving with velocity a. 
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Examples of equations of type (1) or (2) are the Vlasov equations, which describe 
the motion of an incompressible phase space fluid. By splitting, it can be brought 
exactly into form (4) [ 141. Other examples are the continuity equation in incom- 
pressible hydrodynamics or isentropic one-dimensional compressible gas dynamics. 

In order to lind u(jdx, (n + 1)dt) = uJ+’ at time level (n + 1) if uJ is given from 
Eq. (4) for a > 0, we construct the characteristic through point j at time level (n + 1) 
and trace it back to level n. The value of u”(x) at level n on the characteristic is the 
desired value of uJ”. 

Assuming that 0 < a/au F(u) Af/Ax = E < 1, we have 

Min(uj”- i , u;) < uJ” < Max(z$, , ~7). (5) 

This condition is violated only if the profile u”(x) has an extremum between u,y-, and 
uJ’. We will see later that if inequality (5) is enforced, maxima and minima will be 
reduced somewhat by this effect. Equation (5) is called the monotonicity condition 
1121. 

All interpolation formulae used to find uJtl assume that the values UJ are varying 
smoothly and some kind of Taylor expansion or function fitting is meaningful. These 
assumptions are justified most of the time but in the neighborhood of shocks it leads 
to gross over- or undershooting as is shown in Fig. 1. This overshooting creates 
troubles when a discontinuous solution is represented in an Eulerian mesh. 

The overshooting can be eliminated by checking if condition (5) is satisfied after 
the solution for level (n + 1) has been calculated by any kind of convective scheme. 
From Fig. 1 it is evident that overshooting for cubic interpolating between four 
adjacent points is only about half as much as for a parabola. We therefore consider 
the slightly more complicated cubic interpolation formula justified and use it in an 
upstream difference method. However, the method to be described is applicable to 
any interpolation scheme. 

FIG. 1. When a square wave shock is interpolated by a parabola or a cubic, overshooting occurs. 
The overshooting of the cubic is roughly half as big as that of the parabola. 
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If condition (5) is not satisfied, we change uJ’ + ’ by the minimum amount into CJ” I 
so that (5) is now satisfied for all zZJ’+‘. Inequality (5) can be reformulated in the 
following way: 

Aj= S Max{O, Min((uJ’+’ - ~7~~) S, 1 uJ” - UJ I)), (6) 

where S = sign(uy+’ - uJ) and the corrected value of $” is given by 

a;+’ = u;+’ -Aj. (7) 

The reader can easily convince himself that (6) and (7) produce the desired results. 
The implementation of (6) and (7) is called the clipping stage. The clipping process 
(7) destroys flux conservation. We can, however, restore flux conservation if the 
clipping Aj are added to the values ujir, r = k 1, *2,..., subject to the restraint that 
no new extrema are created. Let us assume that at mesh point j there is a 
nonvanishing clipping A,, uj has been changed, and therefore zij = uj-i or uj+, . 
Assume, for example, Cj = uj-, . We do not change uj- i at all but ask if we can add 
Aj to uj+,. If this is possible without creating a new extremum, we add Aj to u,~+, ; 
cj+l = uj+, + Aj. If, how ever, a new extremum would be created, we add only the 
largest possible fraction of Aj to uj+ i such that a new extremum is avoided. Then we 
ask if the surviving rest of Aj can be added to ujtz and the process is repeated. In this 
way the whole amount of Aj is distributed to neighboring mesh points and conser- 
vation of EyEI uj is enforced. Two different subroutines were written. In the first, the 
full process described above was implemented; in the second, only the first two steps 
were implemented with the provision that the rest of Aj be added to ujk3 without 
checking for overshooting. In the actual runs the two versions gave practically the 
same results. 

A simple illustration is shown in Fig. 2. The details of the advancing of the discon- 
tinuity is described in detail in the figure caption. The final result is a shock-like 

,=I 2 3 4 5 6 7 8 

FIG. 2. The figure illustrates how the flux correction works. The shock protile at time n is indicated 
by solid dots. Advancing Eq. (1) by cubic interpolation with E = uAf/Ax produces points indicated by 
crosses. Clearly j = 3 and j = 7 show over- and underschooting. In the clipping stage the amount A, is 
subtracted from U, and A, is subtracted from u,. In the flux-correcting stage A, is added to a, and A, to 
u6. The final form is indicated by the circles. Thus the “mass” is conserved, the dissipation is decreased 
and the scheme is positive definite. 
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structure described by the circled points, which does not exhibit any overshooting and 
which is flux conserving. 

We used the cubic interpolation scheme to propagate a unit pulse according to (4) 
with periodic boundary conditions using interpolation, clipping and flux correction 
for E = uAt/Ax = 0.2. This is exactly the test which Boris and Book used for FCT. 
The only difference is that Boris and Book used 100 points whereas we use only 50, 
which is enough to keep the discontinuities well separated from each other. The 
result is shown in Figs. 3a, b, c for 10, 100 and 800 time steps. The flanks of the 
discontinuities are represented by 3, 5 or 8 points, respectively. Note that the form of 
the discontinuity is highly symmetric, which is in contrast to the results of FCT. 

When running the square wave test we noticed that the test should say something 
about the overall quality of the integration scheme. The square wave test consists 
essentially of straight lines which are exactly represented by any difference scheme. 
Thus, it is difftcult to judge the overall performance of a given code from the square 
wave test. Consequently we used a sine test, which is a sine wave interrupted by a 
discontinuity, and repeated the runs. The results are shown in Figs. 4a, b for 0, 10, 
100 and 800 time steps, again with E = 0.2. After 800 time steps the discontinuity has 
broadened so that it is represented by eight points. Also the amplitude has decreased 
by about 6%. This is a consequence of enforcing (5) even in places where there is an 

i 1 

100 , 
'I -I- 

bW tLilllllillll~ 
c 

FIG. 3. Propagation of a square wave on a circle according to Eq. (1). The time step is such that 
E = uAt/Ax = 0.2. Cubic interpolation, clipping and flux correction were implemented. The dashed line 
indicates the analytical solutions. (a) After 10 time steps, (b) after 100 time steps, (c) after 800 time 
steps. 
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FIG. 4. Propagation of a sine wave interrupted by a discontinuity according to Eq. (I) for 
c = cAr/Ax = 0.2. Cubic interpolation, clipping and flux correction were implemented. The arrows 
indicate the position of the discontinuity in the analytic solution. (a) Solution after 0 and 10 time steps, 
(b) after 100 and 800 time steps. 

extremum between UJ and uj”-, . The discontinuity is located exactly where it should 
be, according to the analytic solution (4). 

In some applications exact flux conservation is not essential and it might suffice to 
incorporate only the propagation and the clipping states into a given code. 
Experiments with the square wave and sine wave worked well; however, the flanks 
diffused somewhat more than with flux correction. Runs with the cubic interpolation 
alone without clipping and redistribution produced over- and undershooting of at 
most 12%, which reduced to 4% after 800 time steps. This is shown in Figs. 5a, b, c 
for the square wave. Figure 6a, b shows the corresponding results for the sine wave 
with discontinuity. 

To demonstrate the method we integrated the hydrodynamic equations (35) which 
are of form (19) for the isentropic case. The energy equation can be replaced by the 
entropy equation 

g++o (8) 

and the equations can be rewritten in terms of the Riemann invariants a and /I [ 151 
as 

aa ar+(u+c)g=o, 

g+(a-c)ap o ax= 1 

(9) 
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FIG. 5. Same as Fig. 3, but implementing only 
shocks which spreads very slowly. 
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FIG. 6. Same as Fig. 4, but implementing only the cubic interpolation. There is a slight growth of the 

amplitude due to the nonmonotonicity. 
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FIG. 7. The solution of an isentropic flow as described in Eqs. (9) and (10) after 40 time steps. Dots 
were drawn only in the shock region. 

where 

a=;@+), 
c=gy- l)(a-/I). (10) 

Equations (9) and (10) are of the form (4) with the variable a being a function of a 
and /3 because of (10). The results are shown in Fig. 7. The shock is very steep and is 
represented by one to two zones only. 

3. CONSERVATIVE EQUATIONS 

Equations of type (1) are very special in that their set of values u(x, t) does not 
change in time. In general, however, the set of values u(x, t) does change in time and 
then a direct application of the monotonicity principle as in Section 2 is no longer 
possible. 

Before discussing a modified application of the monotonicity principle, we ask how 
we can construct in general numerical schemes which are second order in At. We first 
consider the system 

a 
-u=Gu, 
at (11) 

where G is a linear matrix operator independent of t, and u is a vector. 
The solution is given by 

u(t + At) = exp(AtG) u(t), 

where the operator exp(At G) is defined by its Taylor series 

exp(At G) = 1 + At G + 4 (At)* G G + O( (Ar)” 1. 

(12) 

(13) 
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We suggest the following method, which consists of two first order iterations of Eq. 
(11): 

u* = U” + At Gu”, (14) 

u** = u* + At Gu*. (15) 

We assume that the last terms in (14) and (15) are calcuated with an error O[ (Ax)~ ] 
or less in order to maintain overall second order accuracy. Then a second order 
solution is given by 

U n+ ’ = 4 (u” + .**>. 

The proof follows immediately if one inserts (15) and (14) into (16): 

U n+‘=~“+AtGu”+f(At)2G~Gu”. 

If we expand u”” in powers of At, 

(16) 

(17) 

a 1 a* 
U n+‘=~“+Attu”+2zun, 

and make use of the original differential equation (1 l), it becomes obvious that the 
right-hand sides of (17) and (18) agree up to second order. 

This method can be generalized to higher orders. For example, we can iterate once 
more, 

u*** = u** + At Gu**, 

and obtain a third order solution given by 

U “+‘=~(2u”+3u*tu***). 

The iteration method works also for nonlinear equations. Let G be a nonlinear 
operator in conservation form, Gu = a/ax F(u). Then (11) becomes 

;u= ;F(u). (19) 

The operator F does not depend explicitly on t or on derivatives of u. 
The iterated first order solutions are 

(20) 

(21) 

u* = u” + At $ F(d), 

u** = u* + At ;F(u*); 
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then the second order solution is again given by 

u “+ I= f (u” + .**>. (22) 

In both cases, expanding (22) and u(t + At) results in 

u(t + At) = un + At ; F(u”) + ; (At)’ & [ (-gF(u”)i gw,l + .“, 

which proves the second order accuracy of (22) for the nonlinear equation (19). 
So far we simply assumed that spatial derivatives are somehow taken care of by a 

finite difference approximation. We specify this now by 

= (I;i+ 1 - Fj)/Ax + o[(Ax)2], 
itI/2 

(23) 

which introduces a half-integer mesh, similar to the Lax-Wendroff scheme. 
The first terms on the right side of (20) and (21) are approximated by 

uj+ l/2= 2 ’ (Uj+ 1 + Uj) -+ (J*Uj+ 1 + 6*Uj) + O[(AX)4]e (24) 

We summarize Eqs. (20) to (24) for easy reference: 

(25) 

We still have to show that (25) is stable. This is difficult to show for the general case, 
but it can easily be done for the linear equation (4). With a standard mode analysis, 
we obtain, from (25), 

u* = u exp(iK/2) R, 

u** = u* exp(-ire/2) R (26) 

with 

R = cos ~12 (1 + 4 sin2 ~12) - 2i< sin ~12, (27) 
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where K = k . Ax, k is the wave number and c = At a//Ax. The amplification factor M 
is given, according to (25), by 

M= n”+‘/u” = + (1 + P) 

= 1 + cos* K/2(1 + 4 sin2 ~/2)* - 4<* sin2 K/2 (28) 
- 2i{ sin K( 1 + f sin* K/2). 

Expansion in powers of K gives 

1 ibf /* = 1 - +(K/2)” (3 - 16c4). (29) 

Usually the most unstable mode is K = 7~. This value, inserted into (28), gives a 
stability criterion 

IrlG~ (30) 

which is more stringent than the one derived from (29). 

4. DISCONTINUITIES 

In the neighborhood of discontinuities the second order system (25) gives 
unsatisfactory results and we have to ask how the scheme can be moditied near a 
discontinuity or shock and how the code can automatically diagnose such 
irregularities. 

If the solution is regular, the interpolated value (24) for uj+ ,,* should lie between 
uj+l and uj, with the only exception being extrema in that interval. However, if the 
condition 

Min(uj+ 13 Uj) < Uj+ 112 < Max(uj+ 1, uj) (31) 

is violated, we enforce it by replacing (24) by 

uj+ I/ = 4 C"j+ 1 + uj>9 (32) 

which satisfies monotonicity trivially. In other words: given a set of points uj on an 
integer mesh, we produce another set of points uj+1,2 on an half-integer mesh by 
applying (24). If monotonidity is violated, we enforce it by substituting (32) for (24) 
pointwise. Contrary to the procedure in Section 2, we do not have to know any 
properties of the differential equation to apply the monotonicity principle. The prin- 
ciple is being used in a purely geometrical context. As a consequence, it does not 
prevent new extrema in the solution of a differential equation. It even does not 
prevent over- or undershooting of the solution, but it should have a smoothing effect. 
The replacement of (24) by (32) can also be interpreted as adding a diffusive term 
1/16(6*uj+, + 6*uj) to the first order solutions of (19) to the regions where 
overshooting occurs. 
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Equations (32) and (24), when linearized, are related to Boris and Book’s scheme 
SHASTA [4]. However, we aply this formula only pointwise, where the equations are 
strongly nonlinear, whereas Boris and Book apply it to all points. 

Substituting (32) for (24) violates the conservation property of (19). We made use 
of two different ways to keep the system conservative. First, we write the first 
equation of Eq. (25) as 

$+ 112 = i (U?+I+u~)-~(F:+l-F:)+ gj+l- gj (33) 

with 

and the second equation correspondingly. By replacing gj+, by gj or gj by gi+, we 
can easily substitute (32) for (24) and conserve flux at the same time. 

If 

I d2uj+ 1 I > I d2ujl we put gj+l = gj (34) 

but if 

I 62uj+ 1 I < I B2uj I we put gj’ gj+l. 

With this choice, we intend to shift the “clippings,” i.e., the difference between values 
(24) and (32) toward the discontinuity. Many other choices different from (34) are 
possible. 

If our computational loop goes from left to right, the replacement of g,i+ 1 by g,i 
will be checked for consistency automatically later in the loop. However, if gi is 
replaced by gj+ i, we might have created some overshooting in ulP ,,* which remains 
uncorrected. Thus the arbitrary choice of running a computation loop from left to 
right might introduce asymmetries in the solution. 

The second method of flux conservation was described in Section 2, namely that 
the “clippings” are distributed to adjacent mesh points. 

In one variation 50% of the clippings were distributed to the right, 50% to the left. 
If this created overshooting, only so much was added to u.i+1/2iz as to not create 
overshooting. This procedure was repeated with points u,~+ ,,** 2 if necessary. If 
clippings were left over they were simply neglected. In principle this procedure did 
not preserve the flux exactly. In practice, however, little difference was seen when this 
scheme was compared with other distribution schemes in which the flux was exactly 
conserved. 

Runs made with the square wave test showed that the first method, adjusting the 
gi’s, was slightly more diffusive than the second method, which distributed the 
clippings. We therefore present an integration of the one-dimensional hydrodynamic 
equations for the clipping method only, following Sod [ 13 ] closely. 
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The equations are exactly in form (19) with 

(35) 

where p is the density, m = pu is momentum, e is energy per unit volume. We assume 
a polytrophic gas for which p = A(s) p”, where s is the entropy. In terms of the 
energy we have 

P=(Y- l)(e-+m*/p>, 

where we put the ratio of specific heats, y = 1.4. The initial conditions are the same 
as Sod’s The results are shown in Fig. 8 after 80 time steps. The shock in density, 
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FIG. 8. Solution of the Riemann problem in one dimension. (a) Density p, (b) velocity u, (c) pressure 
p. (d) energy-s, (e) entropy s. 
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velocity, pressure and energy occupies two to three zones. The contact discontinuity 
in the density and energy has spread to a thickness of five zones. The density plateau 
between shock and contact discontinuity is well represented. In the velocity and 
pressure profiles small overshootings of about 1% can be observed at the right onset 
of the rarefaction wave. The corners of the rarefaction are only slightly rounded. 

5. CONCLUSIONS 

We applied the monotonicity principle to convective equations and to flux 
conserving partial differential equations. In the first case the monotonicity was a 
consequence of a property of the differential equation. Flux conservation was 
enforced by distributing surplus flux to neighboring mesh points. 

In the second case the monotonicity requirement was used as an additional 
requirement when interpolating a given set of points representing a physical variable 
which can contain a discontinuity. Violation of the monotonicity was diagnosed as 
the occurrence of a discontinuity and the higher order integration scheme was 
replaced by a diffusive lower order scheme. The number of possible implementations 
is very large and we have experimented with only a small fraction of it. In this sense 
the method contains many parameters. However, these parameters are independent of 
a given problem, in contrast to some of the methods discussed by Sod. 

Our method is easily implemented and should not require much more computation 
time than an uncorrected procedure. The monotonicity has to be checked for each 
variable at every mesh point and time step once or twice. As most of the points lie in 
smooth regions of the curve, nothing more must be done. Only at shocks or discon- 
tinuities need the flux be redistributed or adjusted. 

The generalization of the method to two dimensions has not been tested yet. It 
appears that the formulae become more diffusive, but apart from that we do not 
anticipate maj& problems. 
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